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The Zeeman splitting of quasi-one-dimensional electron 
subbands 

N C Constantinou, M Masale and D R Tilley 
Department of Physics, Univemily of !3xx, Colchester CO4 3SQ, UK 

RmiVed 13 December 1991, in final form 6 kbN2.q' 1992 

Abshct. me subband energy levels of an eleclmn confined in one dimension by a 
q'lindricaliy v m e t r i c  square well potential @oth infinite and finite) are investigated 
within the effeclive-mass approximation as a l n n i o n  of magnetic field applied along the 
cylinder axis. For small fields the doubly degenerate states (Iml > a), where m is the 
azimuthal quantum number, are Zceman splil wilh subbands having m > 0 shiling U) 
higher energies whilst those with m < 0 initially decrease in energy. A minimum in the 
energy of the negalive-m states is predicted. This minimum occurs whatwer the specsc 
form of the confining potenlial, the oniy proviso k i n g  that it is cylindrically symmelric. 
This eKed is intimalely related lo the number of elementaw flux quanta +,,(= h f e )  
mntained within the electron's cyclolron orbit. 

1. Introduction 

The dynamics of electrons in a uniform magnetic field has been of interest since the 
earliest days of quantum mechanics. The motion of a free electron is discussed in 
standard texts, e.g. [l], while Harper [Z] discusses Bloc$ electrons. With the devel- 
opment of interest in low-dimensional structures, attention turned to the dynamics 
of electrons in quantum wells. With the field perpendicular to the walls, the motion 
is the usual quantized cyclotron orbit in the plane of the well. However, when the 
field is parallel to the walls, the boundary conditions at the walls play a crucial part, 
and in addition the eigenvalues become a function of wavevector component in the 
plane and transverse to the magnetic field. mama [3] gives the formulation of the 
problem for inlinite walls and shows that the eigenfunctions can be written in terms 
of Weber functions. Lee er a1 141 extend this treatment to the case where the walls 
are finite, although they use the boundary conditions that + and n . V$ are contin- 
uous rather than the effective-mass boundary conditions that apply in simple cases 
for semiconductor quantum well systems [SI. A number of authors, the most recent 
being Mitrait  er al [6], develop self-consistent treatments for systems in which a 
finite density of electrons modifies the single-electron potential. 

Since the prediction by Sakaki [7] of the enhancement of the low-temperature 
mobility when carriers are confined in two spatial dimensions, there has been a great 
deal of interest in the physics of quasi-one-dimensional semiconductor systems [%lo]. 
Until very recently, in contrast to the case of the analogous two-dimensional system, 
wire dimensions have been such that it was difficult to observe occupation of only the 
lowest subband level (the so-called extreme quantum limit) with many subbands being 
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normally occupied. The work of Plaut et 01 1111 was the first to demonstrate the one- 
dimensional quantum limit at zero magnetic field, and they presented results for the 
subband energy variation as a function of perpendicular magnetic field. The electric 
confining potential often assumed is parabolic, although self-consistent calculations 
by Law et al [I21 demonstrate a confining potential that has a form intermediate 
between that of a parabolic and a square well. In fact, the square-well potential with 
finite walls is useful in interpreting some of the measured subband levels [ll]. A 
recent paper by Makar el a1 [I31 deals with a related problem. In their work they 
consider the density of electronic states for a metallic cylindrical shell when subjected 
to an axial static magnetic field. This is an interesting problem to which we return in 
section 5. 

In view of the above considerations, it is timely to consider the one-dimensional 
analogue of the work by Klama [3]. Specifically, we consider a cylindrical quantum 
wire ( G a b )  embedded in a host material (Al,Ga,-,As) with the magnetic field 
applied along the cylinder axis. This type of structure was proposed by Iafrate et al 
[14] and is similar to structures fabricated by Gibert et af [U]. The subband energy 
levels in the absence of a magnetic field have been obtained recently by Constantinou 
and Ridley [16]. 

In this paper we derive the singleelectron energy spectrum for a cylinder in a 
uniform applied field B parallel to the axis. Fbr ease of presentation we deal first 
with the case of an infinite potential step at the outer radius of the wire, then turn to 
a hnite step across which effective-mass boundary conditions are applied. Although 
the former is a limiting case of the latter, it is helpful to survey the results separately. 
The key parameter is the ratio a,/& where a, is the cyclotron radius for angular 
momentum ti: 

N C Gmstatttinou et al 

a: = h/eB (1) 

and R is the cylinder radius. In the absence of any other potential, the magnetic 
field may be seen as confining the electron to the classical orbit of radius a,. Thus 
if a J R  < 1,  the electron is strongly confined by the magnetic field, confinement in 
the cylinder is irrelevant, and the spectrum is the quantized cyclotron energy 

E, = (n+ ;)Fluc n =  0,1,2,3,. . . (2) 

where 

w, = e B / p  (3) 

is the cyclotron frequency and p the electron’s effective mass. Conversely, for a 
weak field, a , / R  B 1, the magnetic field confinement is unimportant and the energy 
spectrum of an electron in a cylinder is recovered. 

In section 2 we review the Schrodinger equation and energy spectrum for the 
infinite step in the absence of a field, since this does not come out in a very transparent 
way as the h i t  of the spectrum with the field included. The corresponding calculation 
for a mite step is given by 1161 and will not be repeated here. Section 3 contains the 
first main calculation, for the cylinder with an infinite potential step in the presence 
of a magnetic field, while section 4 deals with the 6nite step. Some conclusions are 
presented in section 5. 
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In cylindrical polar coordinates ( p ,  z ,  4) the eigenfunction is 

11,=Ax(p)exp(ikz)exp(irn~$) m = O , * l , f 2 ,  ... (4) 

where A is a normalization Edctor and the radial function x ( p )  satisfies 

d 2  d x  
p 2  5 + p + [ ( 2 p E / h 2 ) p 2  - m 2 ] x  = 0 

with the total energy E, given by 

E, = h2ka/2p + E.  (6) 

Here k is the axial wavevector and E the subband energy. Equation (5) is Bessel's 
equation, the solution that is bounded at p = 0 being 

x = J,(np) (7) 

where 

q2 = 2pE/l i2 .  (8) 

FOr an infinite wall at radius R, the boundary condition is x ( R )  = 0, so the eigen- 
value equation is 

J,(qR) = 0 .  (9) 

Emp = z;,h2/2pR2 (10) 

Equations (8) and (9) together show that the radial eigenvalue spectrum is 

where zmP is the pth mot of the mth Bessel function J,(z). As might be expected 
from simple uncertainly principle arguments, E scales like 1 /R2  for all m and p. 
Note that the eigenstates are doubly degenerate for m # 0. As mentioned, the 
extension of this calculation for a linite wall is given by [16]. 

3. Applied magnetic field, infinite step 

For a uniform field B in the z direction, the vector potential may be taken as 

A P = A , = O  A,+ = 4Bp (11) 

fi = (6: + 6 ; ) / 2 p  + (64 - ~ Q B P ) ~ / % .  

so the Hamiltonian is (with f i  = -iEV and Q the charge) given by 

(12) 
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The eigenfunction may still be written in the form (4), but the ladial function now 
satisfies 

N C Constaruinou a a1 

where the subband energy E is again related to the total energy by equation (6). We 
are interested in the electron states, and as such set the charge Q to -e. It is clear 
from equation (13) that a change of sign in the charge is equivalent to a change of 
sign in the azimuthal quantum number m. Equation (13) may be written as 

where the dimensionless variable 5 has been defined by 

c = p=/2a: (15) 

and the eigenvalue is given by (6). The substitution [l] 

x = A e ~ p ( - ~ / 2 ) $ ” ~ ~ ~ W ( ~ )  

leads to 

a W = O  d2 W dW 
€ -+(b -E)  -- 

dF’ dE 

which is the canonical form of Kummer’s equation for the confluent hypergeometric 
function [17]. 

The solution of (17) that is bounded at p = 0 is 

WE) = M(Q,b,E) (18) 

where 

a = & -  2 E I L ,  + $1-1 + $m (19) 

b =  Iml+ 1 (20) 

and 

are the parameters of the Kummer function in standard notation. The boundary 
condition V = 0 for p = R therefore leads to the eigenvalue equation 

M ( a , b , R 2 / 2 a : )  = 0. (21) 

For given R/a, and given azimuthal quantum number m (Le. given b), this deter- 
mines the eigenvalue E since it determines a. It is seen from (19) that the sign of m 
enters the eigenvalue, as can be expected on simple physical grounds. For an infinite 
medium, R -+ 00, equation (21) is replaced by the requirement that M be bounded 
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as R2/2a2 + m. As discussed by Landau and Lifshia this simply means that a is a 
negative integer, 

a=-1 1=0,1,2,..* (22) 

leading to the standard result 

E =  n + $  rW, 0 
with 

n = l + m  form>O 

n = l  for m<O. 

For a , /R  > 1, on the other hand, confinement by the magnetic field is unimportant, 
and the eigenvalue spectrum of (IO) is recovered. 

Numerical evaluation of the formulae of this section requires subroutines for the 
mnfluent hypergeometric functions. These are not available in standard libraries so 
we have employed their integral representations 1171. 

0 10 20 0 10 20 
B 1T1 B IT1 

ngore 1. Lowest-order abband mergies versus magnetic field for an infinite po- 
tential. me subbands are identi6ed ty their (m,I) quantum numbers and the se- 
quences sIaR from Ihe loweqt-enqy subband (U )  mnrsponds IO a wire of radius 
100 & the ( m , I )  sequence ir {(0,0),(1,0),(2,0),(0,1)) for the solid ames 
and { ( - l , O ) , ( - Z , O ) }  for the dasbed cumes. (b) m l r q a n d s  IO R = MO A and 
Ihe squence h {(0,0),(1,0),('2,0),(0,1),(3,0),(1,1)) for the solid m e s  and 
{(-1,0),(-2,0),(-3,0),(-1,1)) for Ihe dashed "s. The other parameter is 
p = 6.1 x kg. 

Some of the eigenvalues obtained numerically from (21) are depicted in figure 1 
for two different radii. We cOncenrrate OUI discussion on the curve corresponding 
to a wire of radius 300 k For zero applied magnetic field the states are doubly 
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degenerate except, of come,  those correponding to m = 0. The application of a 
magnetic field lifts this degeneracy, with the states characterized by m > 0 shifting to 
higher energies and those. characterized by m < 0 initially shifting to lower energies. 
This is just the a m a n  effect. Fbr small magnetic fields the energias are given by 

N C Consluntinou a al 

E = E,, + imhw, m = 0,*1,&2.,. . . (26) 

where E,, is the subband energy at zero magnetic field. In fact, for a given m (# 0) 
the difference in energy between the positive and negative states remains Imlhw, at 
larger fields. For small magnetic fields the m = 0 subbands are unaffected since 
they have zero orbital angular momentum. As the magnetic field increases we see 
that there is a minimum in the energy for states with m < 0 corresponding to fields 
between 5 and 15 T The reason for this is as follows. The interaction of an electron 
with the magnetic field consists of two parts Hl and fi2 given by 

H ,  = ( e / p ) A . p =  $ w , t ,  (27) 

Hz = ( e a / 2 p ) A A 2  = ipwzp2 (28) 

where E, is the r-component of the orbital angular momentum operator. The 
interaction H1 is responsible for the linear Zeeman splitting. The energy quadratic 
in B is often ignored in atomic spectroscopy as the expectation value ( p z )  is typically 
a few square @strams. Dingle [IS] has considered the problem when H is a small 
perturbation. In the case of a quantum wire (p2) is typically around 15OZ az and thus 
H, is not in general negligible. The minima in the energies for states with m < 0 
occur at a magnetic field such that (B,) = Z(k,}: 

?r(p’)B = Imlh/e = Iml@, m = -1,-2,-3,. . . (29) 

where O,, = h / e  is the fundamental flux quantum. The general nature of the 
argument leading to (29) suggests that for any form of the conlining potential in the 
wire with cylindrical symmetry, the E-B curve will have a minimum for negative n, 
and that it will occur at about the field given by (29). We therefore see that the 
energy minima oocur whenever (m( flux quanta are enclosed within the electron’s 
cyclotron orbit. The minima in the subband energies for electrons with negative 
azimuthal quantum numbers is the main prediction of this paper and ought to occur 
in other low-dimensiona1 systems in which the carriers have intrinsic orbital angular 
momentum such as spherical quantum dots. 

Comparison of figure I(u) and l(b) shows that for R = UM A the negative-m 
minima are located at magnetic field values that are quite accessible experimentally, 
but for R = 100 A they are not. The scaling of the field axis with cylinder radius is 
clear from (1) and (21): the B scale decreases quadratically with increasing R. 

’Ib complete this section we illustrate in figure 2 the radial wavefunctions of the 
lower-order eigenvalues. It should be noted that the radial wavefunctions for positive 
and negative values of m are the same. This follows straightfonvardly from the fact 
that their energy difference is always lm(kwc The m = 0 wavefunctions are the 
only ones that are finite on the axis, although they have zero gradient there. The 
(m( = 1 wavefunctions vanish at the origin whilst their gradient is finite; the JmJ = 2 
wavefunctions have zero value and zero gradient at the origin. For higher magnetic 
fields the radial wavefunctions shift towards the cylinder axis as expected, and this is 
clearly seen when 2(b) and 2(d) are compared. 
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-0.6 -0.6jp, 
0.4 0 .8  0 0.4 9.8 0 

P'R P/R 
Figure 2 The radial wavefunctions vemw p I H  for a LlEnite potential well tor R = 
MO.& (0 )  m = 0, B = 5 T  (b) Iml = 1, B = 5'1; (c) ltnl = 2, B = 5 T  (d )  Iml 
= 1, B - 15 T 

4. Applied magnetic field, finite step 

We now consider the more general situation where the potential takes a finite value 
V for p > R; this would be a model for a G a h  quantum wire in Al-rGa,-,As, for 
example. In the outside region, the wave function is (with C a normalization factor) 

xo = c e x ~ ( - € / 2 ) E ~ ~ " ~ U ( a , b , € )  (30) 

where E is given by (14) and b by (ZO), U is the solution of the confluent hypergeo- 
metric equation that is bounded as E + CO, and a is given by 

0 = (V- E)/hw, t i(1 t m t Iml). (31) 
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The effective-mass boundary conditions are that x and p-l  d X / d p  are continuous 
at p = R; applied to (16) and (30) these lead to the eigenvalue equation 

N C Cmtanfinou a a1 

where p1 and p2 are the effective masses of the interior and exterior regions and the 
prime denotes differentiation with respect to the argument. 

n i 0  
E I T 1  

20 0 ;0 20 
B IT1 

Figure I L o w a t a d e r  subband energies versus magnetic 6eld for a finite polen- 
fial well (V = 190 mev) for. ((I) R = 100 A with UIc solid curves mmponding 
to the sequence ~ ( 0 , 0 ) , ( 1 , 0 ) , ( 2 , 0 ) , ( 0 , 1 ) , ( 3 , ~ ) , ( 1 , 1 ) )  and thedashai a w e s  to 
{(-1,0),(-2,0),(-3,0),(-1,1}; (6) R = xx) AwiUI mild and dashed CUIVC se- 
quences as for figure I(b). The other parameter is & f p1 = 1.4. 

The general discussion of the eigenvalue equation (32) and in particular the Way in 
which tiie azimuthal quantum number m enters is the same as in section 3. The zero- 
field results, which form the a, - 03 limit, are given by Constantinou and Ridley. 
Some curves to illustrate the results are shown in figure 3. Again we concentrate 
on the low-energy states of the 300 8, wire. The behaviour is similar to that of the 
infinite wall system. The important point is that the minima in the m < 0 curves 
still exkt and occur around the same magnetic fields as before. The main difference 
between the two cases is that the energies are lower in the case of a finite well as is 
clear from the uncertainty principle. It is interesting to note that for the 100 A wire 
the pairs of confined subbands corresponding to Iml = 1, I = 1 and Iml = 3, 1 = 
0, now have energies less than V. The finite-potential wavefunctions are not shown 
here for brevity. For the low-lying energy levels they are not too different from the 
inlinite-wall wavefunctions although, of course, there is penetration into the barrier. 

S. Conclusion 

The quasi-one-dimensional subband energies of electrons confined by a cylindrically 
symmetric squarewell potential (both infinite and finite) have been calculated within 
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the eactive-mass approximation as a function of applied magnetic field along the 
axis of the cylinder. A minimum in the energies associated with camers having 
negative azimuthal quantum number is predicted. This effect arises whenever the 
confining potential has cylindrical Symmetry and is not restricted to the squarewell 
type. 'Ilese minima occur whenever Iml quanta of magnetic flux are enclosed within 
the elecuon's cyclotron orbit It should also be noted that a similar effect ought to 
occur in spherical quantum dots [19] although we do not analyse this system here as 
we leave this to a future calculation. In fact, this system is dosely related to that of a 
hydrogen-like donor in a magnetic field. Praddaude [ZJ] has investigated the energy 
levels of hydrogen-like atoms in magnetic fields m which minima in the negitive-m 
states are also predicted. 

The closely related work of Makar et af 1131 is concerned with the eigenfunctions 
in cylindrical shell, where the electron b confined to the region R, < p < R,. In 
that work, the authors develop approximate solutions in terms of Airy functions and 
give an extended discussion involving limiting and asymptotic forms. In fact an exact 
solution is possible. We hope to retum to a discussion of this at a later date. 

Fmlly, Patel ef al 1'211 have applied parallel magnetic fields to a quasi-one- 
dimensional mnstriction. Similar experiments in systems where the conlining poten- 
tial has cylindrical symmetry may make it possible to investigate experimentally the 
behaviour of the subband energy levels as a function of parallel magnetic Eeld. 
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